
Journal of Statistical Physics, VoL 29, No. 3, 1982 

Integration of the Boltzmann Equation in the 
Relaxation Time Approximation 
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We integrate by very simple means the Boltzmann equation in the relaxation 
time approximation. Our result improves on the solution previously found by 
Chambers, which does not take into account initial conditions. 
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1. INTRODUCTION 

In this note we integrate the linearized Boltzmann equation in the relax- 
ation time approximation 

Of af F(x) af f _ f(o) 
a-7 + V .  + . . . .  m 3v ~-(x,v) 

lim f (x ,  v, t) = p(x, v) (1.1) 
t-->0 " 

where (x, v) is in R 6, dots indicate scalar products, and 3/3x,  3/3v denote 
the usual gradients. Of course we assume that the force field F :  R 3 ~ R 3 is 
such that dx/d t  = v and dv/dt  = F ( x ) / m  has global, unique solutions. 
Our result improves Chambers' results. (1.2) 

Our method is an application of rather standard semigroup analysis 
and it is indeed a particularization (but independent of it) of more powerful 
methods for obtaining a probabilistic representation for a class of linear 
integrodifferential, nonhomogeneous, Cauchy boundary value problems. 
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See Ref. 3 where also references to the real masters are given. Anyway, our 
technique seems not to have been applied and Chambers '  method has made 
it to standard reference works.  (4-6) 

We obtain two different results depending on whether the f (~ in (1.1) 
satisfies either of 

Of(o) Of(o) F(x )  Of(~ 
0 - - - - 7 - + v ' T + "  m " Ov = 0  

(1.2) 
Of(o) F(x)  Of(o) 

v--0-Tx + - -  - - - 0  m 8v 

or none of them. This distinction does not affect the method of solution but 
makes the difference with Ref. 1 (and users) more apparent.  

In Section 2 we obtain the general solution to (1.1), in Section 3 we 
make some general comments  on the solution, and we end with a simple 
application. 

. 

where 

and 

THE SOLUTION 

Let us rewrite Eq. (1.1) as 

ag ag F(x)  
a---i +v'-Uxx + - m  � 9  =-h(x , v , t )  

8v 

lim g(x ,  v, t) = O(x, v) 
t---~O 

(2.~) 

g(x,  v, t) = e ( t ) f ( x ,  v, t), h (x; v, t) = 
- e(t)f(~ v, t) 

with e&(x, v) defined below�9 Observe that the differential operator on the 
left-hand side can be thought of as the generator of a flow o n  ~6 x ~ given 
by  

dx dv F(x )  dt 
- - - ,  - 1 ( 2 . 2 )  

dt - v, dt m dt 

I f  F :  R 6 X ~ --3' ~ is a continuously differentiable function, we shall put 
TtF(x ,v , s  ) = F(eot(x,v),s + t), where 0t : ~6 .._)~6 is the flow associated to 
ax/at = v, av/at = F ( x ) / m .  

The T t so defined defines a one-parameter  group on any nice Banach 
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space of functions on ~6X ~. The infinitesimal generator of T t is G 
= O/~t  + v .  8 / O x  + F ( x ) / m .  ~/Ov,  and the Green operator (resolvent) is 
U ~ = f g e - ~ t T  t dt. It takes a straightforward calculation to verify that 

(a - G ) U  ~ = I (2.3) 

on appropriate domains (containing the continuous bounded functions). 
From this it follows that g = U~h solves 

(a  - G)  g = h (2.4) 

and if we take the case where a = 0 it follows that 

;5 g ( x , v , t )  = h ( , , , t  + u)du  (2.5) 

solves (2.4) with a = 0, i.e., Gg = - h. Of course h (x, v, t) must be such that 
(2.5) makes sense. 

We have thus found a particular solution of the in_homogeneous 
equation (2.1), and in order to take care of the initial conditions we note 
that the solution of 

is given by 

8gl ~gl F(x) ~gl 
agl  = --~- + v " --~-xx + - -m - -=0 O v  

g,(x, v, o) = +(x,  v) 

~,(~,v,O=r 

(2.6) 

(2.7) 

Now, in order to solve (2.1) note that the value of g(x ,  v, t) at t = 0 is 

g(x,v,O)= fo~h[~u(x,v),u]du 
and that the solution of (2.6) with ~p(x, v) = p(x,  p) - g ( x ,  v, 0) is 

gl(X,V,t) = 0 [ * __ , ( X , V ) ] [ ~ h [ * u I I ( X ' ~ ) ' U  ] du 

and therefore the complete solution of (2.1) is 

= + + u] du-  fo 

(2.8) 
In the formulas above we used the fact that q~, �9 ~s = q~t+, for any t ,s .  

Replacing h ( x ,  v, t) by - e ( t ) f  ~~ v, t ) / r ,  g ( x ,  v, t) by e ( t ) f ( x ,  v, t), we 
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can write the solution to (1.1) as 

f(x, v, t) = e(t)-lp[ ff_,(x,  v) ] 

-fo~176176 + t] du 

du + fo~e(t - u)-'f(~ E *~-t(x,  v), u ] ~'[ 4,,-,( 19)] X, 

= e(t)-lO[ep,(x,v) ] 

+ fote(u)- ' f (~ - u] au (2.9) .[ ,  
Let us now consider the case whe re f  (~ satisfies either of the equations 

(1.2). Now, defining g(x, v, t) = e ( t ) ( f -  f)(o)) and ~I'(x, v) = O(x, v) - 
f(~ we are in case (2.1) with h -  0 and a new initial condition 
which coincides with (2.6); therefore the solution is 

f (x ,v , t )  = f(~ + e(t)-lqZ[ep_t(x,v)] (2.10) 

3. ANALYSIS OF THE SOLUTIONS 

One obvious fact that follows from (2.9) and (2.10) is that for large 
t, the influence of the initial data disappears: it decays exponentially with 

-1 rate ~" 
For f0 satisying (1.2), the asymptotic behavior of f coincides with that 

o f f  ~ In the other case the analysis depends on the behavior for large t o f f  ~ 
as well as the behavior of q~t(x,v) in the remote past. But there are some 
easy, general cases. 

First when fo does not depend on t, then from (2.9) it follows that 

du as t--~oo (3.1) f (x ,  v, t )-~ f0~ ~p_~(x, v)] "/-[ q, , (x ,  tg) l 
Another possibility is that f~ v, t )~ f~  v) as t ~  oo, uniformly in 

(x,v). In this case, for every fixed u we have f ~  
f~ as t ~  oe. Since the f~ t) and f~ are assumed to be 
such that the integrals involved are finite, we can pass to the limit under the 
integral sign and say 

f(x,v,t)--> foo~~176 (3.2) 

At this level of generality, little can be said about transport equations. 
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If A (v) is some function of v, one is interested in the quantities 

(A (v))(x, t) = f A (v)f(x, v, t) dv 

We see from (2.9), for example, that 

(A(v))(x,t) = e(t)-~ f A(v)q~[ r ] dv 

from which, and in case any of the conditions leading to (3.l) or (3.2) 
holds, we shall have 

(A (v))(x, t)--> s  du f A (v)f~ [ d~_~(x, v) ] dv/r[ O-u(x, v)] 

but little more can be said without being more specific about the f~ v, t). 

4. COMMENTS AND A SIMPLE APPLICATION 

The difference between our method and that of Refs. 1 and 2 is that 
we do not make assumptions on the change of f(x,v, t)  as a resuIt of 
collisions but apply straightforward computations which enable us to get 
the result in a form in which initial conditions are taken into account. This 
would be relevant in problems where r is large and transients may be 
significant. The result in Refs. 1 or 2 is only a particular solution to the 
inhomogeneous equation. 

We should also stress that (1.1) is a gross simplification of the Boltz- 
mann equation. A better linearization which takes into account collisions is 
described in Ref. 6. Also, some applications may require finite spatial 
volumes, in which case techniques like those in Ref. 3 should be invoked. 

To finish let us consider a particle in an electric field E and a magnetic 
field B moving according to 

dx dv = c ( E + v A B )  
-d =v, d--i 

where x, v, E, B are vectors and A denotes the standard vector product. Let 
~2 be an antisymmetric matrix such that meB A vie  = ~2v; then it is easy to 
see that 

v(t) = U(t)v o + (e/m)R(t)E (4.1) 

where U(t)= exp( -  f~t) and R(t)~-ftoU(s)ds. From (4.1) x(t) is obtained 
by simple integration and 

ep,(x,v) = x + R(t)v + e(m)~tR(s)dsE, U(t)v + (e/m)R(t)E 
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It follows from the last result of Section 3 that the equilibrium value of 
(v)(x, t) is given by 

(v)(x) = fo~176176 v) ] 

If we assume that ~" is a constant a n d f  ~ is such t h a t f  ~ depends only on 
v, i.e., it is an unnormalized density and we interpret results as per unit 
volume, the last identity above can be written as 

<v)= + fo~176 vf~ v(-t)v + eR(t)E/m]dv (4.2) 

From the orthogonality of the matrix U(t) it follows that 

f v f~  U ( - t ) v  + eR(t)E/m] av= u(t) f [ v - e R ( - t ) E / m  ]f~ 

and if we assume furthermore that fvf~ dv = 0 and fr~ dv = 1 and use 
the fact that U(t)R(- t )  = -R( t ) ,  (4.1) can be rewritten as 

) J m 
-t / 'R(t  dt E = e~" (1 + f~ - ) - lE  

m.r 

In the case B -- 0 (or ~ = O) we obtain that 

j = e(v) = e2"r E 
m 

and when B = (0,0,Bz) and E = (Ex,O,O) another simple computation 
shows that 

- 1  

J ~ =  1 + ~ c 2  Ex 

Jy= ~ (  1 + -'~Tc2e2Bf~2) -1 (_._.~eBJE~) 

L = 0  
from which the cases eBz'r/mc >> l or << 1 can be obtained. 
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